
VOLUME: Enable Large-Scale In-Memory
Computation on Commodity Clusters

Zhiqiang Ma Ke Hong Lin Gu
The Hong Kong University of Science and Technology

{zma,khongaa,lingu}@cse.ust.hk

Abstract—Traditional cloud computing technologies, such as
MapReduce, use file systems as the system-wide substrate for data
storage and sharing. A distributed file system provides a global
name space and stores data persistently, but it also introduces
significant overhead. Several recent systems use DRAM to store
data and tremendously improve the performance of cloud com-
puting systems. However, both our own experience and related
work indicate that a simple substitution of distributed DRAM for
the file system does not provide a solid and viable foundation for
data storage and processing in the datacenter environment, and
the capacity of such systems is limited by the amount of physical
memory in the cluster. To overcome the challenge, we construct
VOLUME (Virtual On-Line Unified Memory Environment), a
distributed virtual memory to unify the physical memory and
disk resources on many compute nodes, to form a system-wide
data substrate. The new substrate provides a general memory-
based abstraction, takes advantage of DRAM in the system to
accelerate computation, and, transparent to programmers, scales
the system to handle large datasets by swapping data to disks
and remote servers. The evaluation results show that VOLUME
is much faster than Hadoop/HDFS, and delivers 6-11x speedups
on the adjacency list workload. VOLUME is faster than both
Hadoop/HDFS and Spark/RDD for in-memory sorting. For k-
means clustering, VOLUME scales linearly to 160 compute nodes
on the TH-1/GZ supercomputer.

I. INTRODUCTION

Modern cloud and big-data processing systems rely on

high-performance computation in datacenters. Each datacenter

contains one or more clusters composed of a large number of

compute servers and a high-bandwidth interconnect, both built

upon commodity hardware but often customized. Programming

such a large loosely-coupled system is, however, very chal-

lenging. Traditional solutions, represented by MapReduce and

Hadoop, use a distributed file system to provide a global name

space and data substrate [1]–[3]. This enables the system to

scale, but makes it slow and difficult to support interactive,

real-time or sophisticated computation. More subtly, the file

system based data substrate induces designers to assume long

latencies when they design other components in the system,

making the system increasingly slow.

The reliance on the file system was a reasonable design

choice when hard drives were the only economical random-

access device for storing hundreds of gigabytes of data [4].

However, the hardware cost structure and technological context

today have been dramatically different from those constraining

designers a decade ago. Along with several recent research

initiatives, we believe that a memory-based abstraction is

viable and can significantly enhance the programmability and

performance of cloud computing systems. In 2009, Phoenix

showed MapReduce computation can use shared memory on a

multicore system [5]. In 2010, MRlite implemented in-memory

MapReduce computation on multiple compute servers [6],

RAMCloud proposed to build DRAM-based storage [7], and

Spark is proposed for in-memory computation across a number

of compute servers [8]. Today several DRAM-based cluster

computing systems, including DVM [9], RAMCloud [10]

and Spark/RDD [11], have been implemented and exhibited

significant advantages in efficiency and performance.
However, a simple substitution of DRAM for the file sys-

tem abstraction cannot provide the functionality and viability

required for a solid data substrate on the datacenter platform.

Both our own experience and related work indicate that pure

DRAM-based systems have the following limitations in com-

parison to disk-based file systems.

• Cost and scalability: Although the price of DRAM has

been sharply reduced in the recent decade, so does the

price of hard drives. Today the cost of DRAM is still two

orders of magnitude higher than that of hard disks for

the same capacity. For example, a representative configu-

ration of RAMCloud organizes 64TB storage using 1000

servers [7]. The unit cost, $60/GB based on listing prices,

is at least 60 times higher than that of disks. At the same

cost, a disk-based system can easily provide 4PB storage

capacity.

• Persistency: A file system stores data persistently but

DRAM is volatile. While replicating data in the main

memory of multiple servers can emulate persistent data

storage, such mechanisms must span wide geographic

regions for it to be resilient to correlated faults, such

as power outage in a city. The cost of long-distance

replication is concerning, and latency multiplies even for

in-datacenter replication.

• Semantic gap: The role of the file system in the cloud

computing technology is, in fact, much wider than pro-

viding storage. It exposes a global name space for

inter-process communication, enforces atomicity for data

writes, and may assist in the concurrency control of

the system. For example, multiple tasks on the Google

cluster can exchange data in the GFS name space, and

MapReduce uses GFS’ atomic rename to implement

idempotent reduce semantics. Such file system semantics

are sometimes subtle, but they are crucial to the correct-

ness of the computation in a large distributed system.

Current DRAM-based storage systems do not provide

such semantics.

We believe that the memory-based abstraction can indeed

significantly enhance the capability and performance of cloud

computing systems, but the design shall construct a solid data

storage and exchange substrate with clearly-defined and useful

semantics, and the abstraction does not necessarily fixate on

only DRAM-based organizations. In fact, DRAM and magnetic

disks have their own unique advantages that complement each

other’s, and traditional virtual memory systems are an example

of integrating the strengths of both to achieve a memory

abstraction that is “as fast as memory, as large as the disks”.

Similarly, a synergy of memories and hard disks, facilitated by

today’s high-bandwidth network, will provide a fast, scalable

and cost-effective way to store and transport data in a cluster.
Hence, we design a distributed memory system called VOL-

UME (Virtual On-Line Unified Memory Environment) to unify

main memories and hard drives on many servers and construct

a uniform memory space shared by potentially a large number

of tasks. VOLUME handles the data in physical memory

when possible, and can also smoothly scale to store large data

using disks. Importantly, scaling to handle large data and the

optimization of data flows are transparent to the programmers,

hiding the fact that data reside on distributed compute nodes.

Moreover, VOLUME allows programs to make data persistent,

and defines memory operation semantics so that groups of

memory operations behave in a way similar to transactions

with atomicity, isolation and persistency.
It is also our goal to make VOLUME general-purpose—it

should be designed to support a wide spectrum of computation,

including not only offline data processing but also low-latency,

iterative, interactive and consistency-critical computations. As

a general-purpose substrate, VOLUME should readily bene-

fit existing cloud computing technologies without requiring

creation of new instruments or an overhaul of the existing

architecture—it should be possible to substitute VOLUME for

the existing data substrate in a cloud computing technology

and immediately enhance its functionality and performance.

Designed as a general-purpose data substrate, VOLUME can

also be applied in other file system based cluster computing

systems, such as MapReduce, and accelerate computation with-

out losing the functionality, economy and scalability provided

by the file systems. Our performance evaluation shows that

VOLUME facilitates low-latency and high-throughput data

exchanges, and that VOLUME can be 7 time faster than

Hadoop on some workloads. We highlight the challenges,

outline our approaches and state the contributions below.

• VOLUME aims to provide a large uniform memory space

in which each processor (node) can address any subset of

the memory space. The data that a single node accesses

may well exceed the size of its main memory and local

hard drives combined together, and, consequently, data

may reside in local main memory, local hard drives,

remote main memory or remote hard drives. VOLUME

must transparently fetch data from and swap them to

appropriate locations. This is one of the reasons why a

simple design that “expands” the memory on individual

nodes with large swap areas cannot work for our purpose.

VOLUME must hide the location details without introduc-

ing excessive overhead, and maintain a uniform global

address space with consistent semantics on a distributed

system with commodity hardware. A large computation

in a datacenter can potentially scale to thousands of

concurrent tasks on hundreds of nodes. To the best of

our knowledge, VOLUME is the first “virtual memory”

system that coordinates transparent memory accesses to

distributed memories and disks at such a scale.

• VOLUME should provide a mechanism for application

programs to store data persistently and read data from I/O

devices. We introduce persistent memory in the system,

and VOLUME automatically writes data to hard drives

in a way that allows other tasks or programs to retrieve

the data at a later time. This mechanism advances the

memory-based cloud technology to systematically specify,

store and read persistent data.

• We design VOLUME to provide a transactional behavior

and ensure the writes of multiple data by a task are

atomic. To the best of our knowledge, VOLUME is the

first system to provide transactional memory semantics on

virtualized memory among many computers.

The rest of the paper is organized as follows. We present the

design in Section II and show evaluation results in Section III.

Section IV surveys related work and Section V summarizes

our conclusions.

II. DESIGN

We design VOLUME, a distributed transactional virtual

memory system with persistency support, as the substrate of

data handling in datacenters. VOLUME provides a unified

memory space, and virtualizes distributed physical memory

and disks from compute nodes connected through the network.

In addition to the physical memory on the local node, the data

in VOLUME may reside in the local disks, remote physical

memory or remote disks. The data distribution and communi-

cation are transparent to programs running in VOLUME. The

data access is as fast as using physical memory when the data

is on local physical memory. The data size can scale to the

combined capacity of all memory and disks in the system,

and VOLUME automatically optimizes the system latency by

storing and servicing data from memory as much as possible.

In VOLUME, tasks of a program share the same memory

space, access their data structures during the execution and

make the data persistent if it is needed with normal memory

operations, following a snapshot-based transactional semantics.

In our implementation, we dispatch tasks to processors for

execution using Layer Zero [12] which can manage hundreds

of hosts in datacenters to form a big virtual machine and

provides a meta-scheduler that schedules tasks to the compute

nodes in the system.

A. Distributed Virtual Memory

Fig. 1 shows the architecture of VOLUME which runs on

top of one, multiple or many physical hosts. We abstract groups

of memory and disk resources to be virtual memory containers

(VMC). The system has many processors and VMCs. A VMC

manages the physical memory and disks in it and provides

the virtual memory resource. All the VMCs together form the

unified memory system. VMCs handle the resource requests

Fig. 1: VOLUME architecture

from the upper layer, and swap data among the physical

memory, disks, and remote VMCs through the network.

As many tasks of a program access the same unified

memory space of VOLUME concurrently, it is challenging

to efficiently control and support the concurrent accesses.

VOLUME provides the atomicity and snapshot semantics to

programs and implements the consistency model that ensures

the same properties as standard snapshot isolation [13] adopted

by many relational databases. Each task can use a specific list

of pages grouped to be a snapshot which is a set of memory

ranges instantiated with the memory state at a particular point

of time. Each task’s updates to the virtual memory during

its execution only affect its own snapshot. A task can only

commit its changes in its snapshot to the global memory

space when it exits. Hence, tasks are isolated and each has

a consistent view of the memory space. After a task exits

and commits successfully, its changes are visible to other

tasks whose snapshots are created after the commit. If a

task’s commit has any write-write conflict with other tasks’,

the commit fails and the task is aborted. Major parts of

workloads in datacenters, such as MapReduce jobs, usually

can be organized to tasks that have no write-write conflicts

and the rate of failed commits is low. To tune the performance

of programs, programmers can follow the similar rules for

traditional transactional memory systems [14], such as “large

transactions are preferable” and “small transactions should be

used when violations are frequent”.

For managing the memory space and snapshots, VOLUME

has a home service to coordinate the snapshots and each task

has its own page table. The home service is a centralized

service which maintains the metadata of the memory pages in

the whole memory space for creating snapshots and guarantees

the atomicity of commit operations, acting like the directory

controller for directory-based distributed shared memory sys-

tems [15], [16]. Different from these systems, the home service

of VOLUME manages only 2 versions of the metadata for each

page, and snapshot creating and committing only happen when

the meta-scheduler creates, starts and terminates tasks, as in the

previous work which shows that this approach is efficient and

scalable [9], [17].

To assist a task’s accesses to the memory space, the VMC for

the processor/task makes use of the virtual memory hardware

of the host to capture the page fault when the task accesses a

memory location on a page that is not used before, similar to

demand paging. Different from demand paging and traditional

distributed shared memory, VOLUME designs placement and

eviction mechanisms for both local and remote memory and

both local and remote disks. When handling a page fault, the

VMC searches this page in the task’s page table which is

prepared before the task’s execution according to its snapshot

and stores the location information of the pages. A task that

accesses pages out of its snapshot is aborted. If the page is

in the page table, the VMC for this task sets up the page,

retrieves the content of the page locally or from a remote VMC,

and updates the page table entries. Multiple tasks that use the

same memory pages can have multiple copies of the pages and

access these pages concurrently.

Locality and scheduling. To better control the scheduling

of tasks and improve the locality, we add and implement two

scheduling algorithms—the deterministic scheduling and the

delay scheduling algorithms—to Layer Zero’s meta-scheduler

which uses a FIFO scheduling algorithm to assign tasks in the

task queue to available processors by default. The deterministic

scheduling algorithm assigns tasks to processors by hashing

the IDs of tasks to processor IDs. With this algorithm, the

scheduling for tasks to processors is deterministic and remains

the same for repeated executions of a program, which makes

it easier to analyze the behavior of the program. Besides

providing repeatability, the deterministic scheduling algorithm

also gives programmers an instrument to control the scheduling

policy of the meta-scheduler. In general, it also improves the

locality compared to the FIFO scheduler for jobs that run

repeatedly. The more sophisticated delay scheduling algorithm

uses the delay scheduling techniques [18] and may skip some

tasks from the front of the task queue and assign the task that

has better locality on an available processor/VMC. The locality

information is collected from the memory range usage history

of tasks according to their snapshots when the meta-scheduler

dispatches tasks to processors. If a task at the head of the queue

has been skipped for a certain period of time, it is dispatched

to a processor even if the locality is poor.

B. Persistency

Data-intensive computation inevitably requires a way to

make the data persistent. Programs need a mechanism to

make some of its data persistent for storing results which

may be used by other programs at a later time. Files are the

common form of persistent data stored on disks. However, the

programmers need first convert the in-memory data structures

to a format suitable for a file and copy them from the memory

to file systems. The data preparation, system calls and I/O lead

to extra performance overhead in both the programs generating

the persistent data and the ones using them.

To provide programmers a flexible and efficient interface

to store persistent data, we design the persistent memory

mechanism in VOLUME. The persistent memory is a memory

region which programs can access through regular memory

operations. In this way, the distinction between in-memory and

persistent data structures is eliminated, and the same set of

operations can be applied to both kinds of data.

To make the state changes of the persistent memory easy to

reason about by programmers, the memory ranges that a task

Fig. 2: VOLUME commit protocol. Two commits proceed

concurrently.

accesses in the persistent memory are also in its snapshot. After

the task commits successfully, the changes to the persistent

memory by a task in its snapshot are guaranteed to be persistent

on disks. Another task can access and update data in the

persistent memory deterministically at a later time.
As the disks are unified in the memory space with the

physical memory, we should design the mechanism that can

efficiently serve tasks’ memory accesses in the persistent

memory with data on local or remote disks. For efficiently

finding the data on disks, VOLUME maintains a one-to-one

mapping of pages in the memory space to blocks (pages) on

disks and the page fault handling mechanism for non-persistent

memory ranges can be reused. When a task reads a memory

range in the persistent memory for the first time, a page fault is

triggered and captured by the VMC. Different from handling

page faults for non-persistent memory pages, the VMC sets up

the page and retrieves the content from local or remote disks.

After being committed successfully, the memory pages in a

task’s snapshot are stored in the corresponding disk blocks.

C. Atomic commits

One possible way to implement atomic commits is to let

the home service decide whether a commit succeeds or aborts

without requiring a distributed atomic commit protocol [19],

[20]. The VMC for handling the commit first stores copies of

the changed pages locally, and then the home checks whether

the commit can be applied and changes the metadata if the

commit passes the check.
However, as VOLUME unifies the physical memory and

disks, there are challenges for supporting atomic commit

efficiently. To handle possible faults of the home, the changes

to the persistent memory’s metadata should be made persistent

atomically if the commit succeeds. Additionally, VOLUME

requires saving the changes in the persistent memory to disks

which takes more time than storing the data in physical

memory. If a commit is aborted by the home, simply saving the

changes to disks in the persistent memory before committing

is wasted and should be avoided.
Hence, we design the commit protocol of VOLUME, as

shown in Fig. 2, that detects and aborts commits that conflict

with others early and enables the recovery of the metadata

of persistent memory if the home service crashes or restarts

by storing changes to the persistent memory’s metadata to a

write-ahead log. Specifically, the protocol for a task’s commit

consists of the following steps.
1) The VMC prepares the commit by collecting the meta-

data of updated pages by the task in its snapshot, and

queries the home whether the commit can proceed.

2) The home decides whether the commit should be aborted

by checking the in-memory metadata and returns the

result to the VMC. This can abort the commits that have

conflicts with other commits early and avoid useless I/O

to disks (early abort).

3) If the commit is aborted by the home, the VMC discards

the changes. Otherwise, the VMC saves changed pages in

the persistent memory to disks, stores copies of changed

pages in another memory area, and submits a commit

request to the home.

4) The home checks the commit request with the latest

metadata again. If the commit passes the checking, the

home allocates an ID for this commit, writes “start-

commit ID” and the metadata modifications for the per-

sistent memory to the write-ahead log, applies the modi-

fications to the in-memory metadata and logs “complete-

commit ID” to complete the commit.

With this protocol, the changes made by a task are com-

mitted atomically. Any commit that fails to complete the step

that the “complete-commit” log entry is written is aborted when

the home restarts. All successful commits exhibit a serial order

according to the corresponding “complete-commit” log entries.

When a snapshot is created, it includes the pages updated by

the successful commits in the log. Since the pages are stored

before the log entries are written, the snapshot includes the

latest pages committed successfully. In the commit protocol,

only a very small part of the total work for a commit is on

the home. Hence, the home can handle many commit requests

efficiently.
Using the transactional semantics of VOLUME, a program

can also ensure that only one task commits its changes suc-

cessfully when multiple tasks conduct the same work, such

as the backup executions in MapReduce [2]. These tasks can

share a status code s which is the value in a memory range that

indicates whether a task has completed successfully. The task,

say, Ts, which exits and commits first will commit successfully

at time ts, and updates s. The other tasks for this work are in

two classes, both of which will abort:

• The task, say, T1, created its snapshot before ts. s in T1’s

snapshot indicates the task is not completed successfully,

yet and T1 proceeds with the computation, updates s and

tries to commit. As there is write-write conflict between

Ts and T1’s commits on s, T1 aborts.

• The task, say, T2, created its snapshot after ts. s in T2’s

snapshot indicates the task is already done and T2 aborts.

With the atomic commits, VOLUME handles faults grace-

fully and provides an easy-to-reason semantics that the mem-

ory ranges in the persistent memory contain the content

updated by the latest successfully committed snapshots. VOL-

UME handles faults from the home service or VMCs by

restarting them. The home service recovers the metadata for

the persistent memory from the write-ahead log and the VMCs

continue servicing the pages according to the mapping between

the pages in the persistent memory and the blocks of disks on

the hosts where the VMCs reside. This semantics makes it easy

 0

 100

 200

 300

 400

 500

 600

 700

 800

Hadoop Hadoop/RAM Spark VOLUME

E
x
e

c
u

ti
o

n
 t

im
e

(a) Execution time

Input Sort+output
/Map /Reduce

Hadoop 465s∗ 281s
Spark/RDD 47s 509s (287s+222s)
VOLUME 56s 291s

∗ 14% of shuffle phase included.

(b) Time breakdown

Fig. 3: Execution time and breakdown of sorting on 16 nodes

 1

 2

 3

 4

 5

 6

 7

 8

4 8 16 32

S
p

e
e

e
d

u
p

Number of nodes

Speedup/Hadoop
Speedup/VOLUME

Ideal speedup

(a) Word count

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

4 8 16 32

S
p

e
e

e
d

u
p

Number of nodes

Speedup/Hadoop
Speedup/VOLUME

Ideal speedup

(b) Adjacency list

Fig. 4: Speedups on VOLUME and Hadoop

for programmers to design programs to handle the faults in the

cluster and possibly recover the execution of long jobs after

faults to avoid complete re-runs—the content in the persistent

memory is always consistent and programs can store necessary

state for recovery in it. In our current implementation, we

rely on the underlying operating systems and storage systems

(e.g. RAID) for the data availability. In the future work, we

may replicate the committed data to other VMCs for higher

availability and faster recovery.

III. IMPLEMENTATION AND EVALUATION

We implement VOLUME on a cloud computing research

testbed and the TH-1/GZ supercomputer which follows the

architecture of Tianhe-1A [21]. VOLUME is implemented in

around 11,000 lines of C code. We measure the performance,

scalability and overhead of VOLUME, and compare VOLUME

with Hadoop and Spark using 4 diverse and widely used

workloads: word count, a MapReduce benchmark [2], [5],

[22]–[25], k-means clustering, a data mining workload [26],

[27], adjacency list, a graph processing workload [28], and

sort, a benchmark for data processing systems [2], [29]–[31].

Word count counts the number of occurrences of each unique

word in a set of documents, which can also represent a large

subset of real-world MapReduce jobs that extracts a small

amount of interesting data from a large dataset [2]. The dataset

for the word count is the 15GB text content of the static HTML

dump of English Wikipedia in June of 2008 [32].

K-means iteratively partitions a dataset into k clusters [33],

which is one example of the set of algorithms that require

iterative computation. The datasets are a large number of 4-

dimensional data points which are randomly generated by the

standard gensort record generator for TeraSort [34]. We cluster

the data points into 1000 groups and make each k-means

experiment compute for 20 iterations.

Adjacency list generates the adjacency and reverse adjacency

lists of nodes in a graph with the edges as its input, which

is a shuffle-heavy workload that transfers data more than

twice the size of the input across the network. Two input

datasets are generated following the power law as in the related

work [28], and contain around 100 million (30GB) and 500

million (150GB) nodes with an average out-degree of 7.2.

Sorting is an important part of many computing tasks. We

generate sort’s input consisting of 100-byte records with 10-

byte keys by a program, teragen, which produces the same

dataset for the TeraSort benchmark [34].

Following identical algorithmic designs suitable for the

programming models, we implement the benchmark programs

or use standard implementations on VOLUME, Hadoop and

Spark [35]. The implementations on VOLUME follow the

MapReduce programming model including many map tasks

in the map phase and many reduce tasks in the reduce phase.

The evaluation is conducted on the research testbed using 32

compute servers and on TH-1/GZ using 160 compute nodes.

To make the performance comparison fair, we use the same

dataset and equivalent job configurations for Hadoop, Spark

and VOLUME. We also configure the HDFS to store only one

copy of data to avoid additional cost of data replication. In fact,

the configuration slightly favors Hadoop which requires static

slot allocation on each compute node for map and reduce tasks.

We allocate 1 map task slot and 1 reduce task slot on each

node for Hadoop, but run only 1 task on each compute node

for VOLUME and Spark. This configuration also minimizes

the I/O contention to which Hadoop is more sensitive.

A. Performance of unifying physical memory and disks

As VOLUME unifies the physical memory and disks on

many nodes connected through the network, we measure

its performance with different sizes of datasets that can be

processed totally or partially in physical memory.

We first run sort on 50GB input using 16 nodes to evaluate

VOLUME’s performance when the intermediate dataset can

be processed in physical memory. We also run sort on both

Hadoop and Spark for comparison. The input is on disks

managed by HDFS for Hadoop and Spark or the persistent

memory for VOLUME, and the output is written back to disks.

To emulate a solution that uses the file system based systems

and stores data in memory, we also set up Hadoop in the

Linux ramdisk /dev/shm. As shown in Fig. 3(a), both Spark

and VOLUME outperform the file system based Hadoop that

stores data on disks or in memory (Hadoop/RAM). These three

systems share the similar overall structure of the execution

organization and we break down the time as shown in Fig. 3(b).

We also run k-means, word count and adjacency list on the

research testbed to evaluate the scalability and performance of

VOLUME on datasets of moderate sizes. Fig. 4 and Fig. 5

show the execution time, throughput and speedups. As shown

in the results, VOLUME scales better and exhibits superiority

in efficiency than the file system based solution.

Understanding the performance. VOLUME accelerates

the computation in several aspects: low-latency operations on

the intermediate data and small system overhead, efficient

sharing of data among tasks and jobs and efficient support

to input and output. We find two of those are most effective.

First, VOLUME transparently helps the program save part

of the input and intermediate data generated by map tasks

Number Hadoop VOLUME

of nodes (second) (second)

8 27261.75 3610.83
16 14295.00 1882.50
32 7835.82 1032.26

(a) Execution of k-means clustering
on 30 million points

 0

 500

 1000

 1500

 2000

 2500

 3000

4 8 16 32

 50

 100

 150

 200

 250

 300

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
o

n
d

)

Number of nodes

Execution time/Hadoop
Execution time/VOLUME

Throughput/Hadoop
Throughput/VOLUME

(b) Execution time of sorting 50GB
data

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4 8 16 32

 20

 40

 60

 80

 100

 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

T
h

ro
u

g
h

p
u

t
(K

B
/s

e
c
o

n
d

)

Number of nodes

Execution time/Hadoop
Execution time/VOLUME

Throughput/Hadoop
Throughput/VOLUME

(c) Execution time and throughput of
word count on 15GB input

 0

 5000

 10000

 15000

 20000

 25000

4 8 16 32
 0

 20

 40

 60

 80

 100

 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
o

n
d

)

Number of nodes

Execution time/Hadoop
Execution time/VOLUME

Throughput/Hadoop
Throughput/VOLUME

(d) Execution time and throughput of
adjacency list on 30GB input

Fig. 5: Performance of VOLUME on datasets of moderate sizes

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000

M
e

m
o

ry
u

s
e

d
(M

B
)

Time (second)

Physical
memory

Swap

(a) Adjacency list on 2 nodes

 0

 10000

 20000

 30000

 40000

 50000

Hadoop VOLUME

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
o
n
d
)

Reduce
Map

(b) Execution time of adjacency

list on 2 nodes

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

M
e

m
o

ry
u

s
e

d
(M

B
)

Time (second)

Physical
memory

(c) Adjacency list on 8 nodes

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 500 1000 1500 2000 2500 3000 3500

M
e

m
o

ry
u

s
e

d
(M

B
)

Time (second)

Physical
memory

Swap

(d) Sort 400GB data on 32 nodes

Fig. 6: VOLUME memory usage

in memory and significantly accelerates data exchange in the

shuffle phase. For sort, VOLUME and Spark/RDD that store

intermediate data in memory [11] deliver more than 8 times

higher performance for the map or the input phase than Hadoop

that stores the intermediate data in local file systems. For the

shuffle-intensive adjacency list workload, VOLUME delivers

6 to 11 times higher throughput. For the iterative workload

k-means, VOLUME stores the input dataset (after the first

iteration) and centroids in memory and delivers 7.5 times

as high performance as that on Hadoop. Second, VOLUME

supports efficient saving of the results by allowing programs

to directly store data structures in the persistent memory and

commit the changes without the need of converting objects in

files from the file system to in-memory data structures and vise

versa. The sort program on RDD first stores the sorted data in

an RDD and then saves it to HDFS. From Fig. 3(b), VOLUME

finishes the sorting and output emission in the similar amount

of time that Spark uses for sorting data and generating the

RDD of the sorted data. Spark takes additional 222 seconds to

store the data to HDFS. Through these mechanisms, VOLUME

delivers significant higher performance, especially for iterative

workloads and workloads that generate intermediate data much

larger than the input data, and also improves the performance

of workloads that are computation or disk I/O intensive, such

as word count and sort.

To evaluate VOLUME’s performance with different amounts

of data stored on disks, we stress it by running adjacency list

on 2 compute nodes that have 64GB physical memory in total

which is far less than the overall data in VOLUME during the

execution of adjacency list. We examine the memory usage and

compare the execution time of adjacency list on VOLUME and

Hadoop. Fig. 6(a) shows the VOLUME usage on 2 nodes. We

can see that the physical memory usage increases to around

64GB quickly in around 665 seconds. After that the usage

of disk space keeps increasing on both nodes at a lower rate

than the previous ones. This shows that, when the data size

exceeds the memory capacity, VOLUME transparently swaps

data between DRAM and hard disks, providing a lower data

access speed, but ensures the success of the computation.

Fig. 6(b) shows the execution time. Although disks are heavily

used by VOLUME to store data, VOLUME exhibits more than

6 times higher performance than Hadoop. The map phase on

VOLUME uses less than 1/20 of the time than Hadoop’s map

phase takes, which shows the efficiency of data inputting and

intermediate data handling in VOLUME. The reduce phase

on VOLUME takes much less time than that needed by the

reduce phase on Hadoop. This shows that the cost for memory

swapping in VOLUME is smaller than the file system based

solution in Hadoop. As shown in Fig. 6(c), when there are

more than 8 compute nodes, all the data can fit into the

physical memory, which is why it shows superlinear speedups

in Fig. 4(b). Fig. 6 also shows that the memory footprint of

workloads in datacenters may be multiple times larger than

the input, which requires large capacity of the data substrate.

For these workloads, VOLUME is more cost-effective than

physical memory based systems.

To check how VOLUME performs when the total memory

usage is much larger than the overall physical memory and

disks are extensively used at a large scale, we scale the input

size for sort to 512GB on VOLUME with 32 compute nodes.

Fig. 7(a) shows the execution time and throughput. As the

dataset scales, the throughput decreases gracefully because the

usage of disks increases. We measure the VOLUME usage

during running sort on 400GB datasets as shown in Fig. 6(d).

From the memory usage, we can see that physical memory of

the 32 compute nodes is used up and around 300GB disk space

is used for swapping in total when sorting the 400GB data. To

look into how the usage of disks affect tasks’ execution time,

we plot the execution time of tasks during sorting 512GB data

in Fig. 7(b). Each arrow in the figure represents a task. The

map phase consisting of 250 tasks in total completes in 360

seconds, which shows that VOLUME can efficiently service

Input Execution Through-

size time put

(GB) (second) (MB/sec)

256 850.7 300.9
320 1969.9 162.5
400 3666.4 109.1
512 6926.6 73.9

(a) Sorting on 32 nodes

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000

P
ro

c
e
s
s
o
rs

Time (second)

reduce tasksmap

tasks using physical memory using physical memory + disks

stragglers

(b) Progress of sorting 512GB data

Fig. 7: Execution time, throughput and execution progress of sorting

 0

 5000

 10000

 15000

 20000

 25000

10 20 40 80 160
 1

 10

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

Number of nodes

Execution time
Speedup

Ideal speedup

(a) Execution time and speedup of
k-means clustering on TH-1/GZ

 1000

 10000

25 50 100 200 400
 0

 5

 10

 15

 20

 25

 30

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
 p

e
r

s
e
c
o
n
d
)

Size of the dataset (GB)

Throughput
Execution time

(b) Execution time and throughput
of k-means as the dataset grows

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 20 40 80 160
 1

 10

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

S
p
e
e
d
u
p

Number of nodes

Execution time (map)
Execution time (reduce)

Speedup (overall)
Ideal speedup

(c) Execution time and speedup of
word count on TH-1/GZ

Platform Execution Per-node
number time throughput
of nodes (second) (MB/sec)

Research testbed
32 nodes 2039.85 2.30

TH-1/GZ
84 nodes 752.17 2.37

(d) Execution time of adjacency list

on 150GB input

Fig. 8: Scalability of VOLUME on large datasets and many compute nodes

the input from disks. After reading the input, the reduce tasks

start to run and those started after the 2000th seconds take

longer time to complete, which demonstrates that VOLUME

can smoothly handle large datasets in disks and gracefully

decrease the performance. Fig. 7(b) also shows that there are

stragglers. We can start backup executions of them as discussed

in Section II-C to further improve the overall performance,

which we leave as future work.

B. Scalability

To evaluate VOLUME’s scalability on many nodes, we con-

duct experiments of k-means and word count on the TH-1/GZ

supercomputer using up to 160 compute nodes. Fig. 8(a) shows

the execution time and speedup of k-means that processes 300

million points. We can see that k-means scales linearly as

we scale the compute nodes number from 10 to 160. This

shows the good scalability of VOLUME. Fig. 8(c) shows the

execution time and speedup of word count. The execution time

decreases as we scale the number of compute nodes and word

count scales near-linearly on 10 to 40 nodes. However, the

speedup is sub-linear on more than 40 nodes and the time

for reduce tasks does not change much on 40 to 160 nodes.

This is because the number of reduce tasks in word count is

30 and the additional nodes do not improve the reduce phase’s

parallelization. The execution time of the map phase decreases

with more nodes and word count executes faster.
To evaluate how VOLUME performs as the dataset grows,

we run k-means with 30 compute nodes on datasets of varying

sizes from 25GB to 400GB. As shown in Fig. 8(b), the time

increases proportionally to dataset sizes and the throughput re-

mains mostly stable, indicating that VOLUME scales smoothly

with the data size.
To examine the efficiency of VOLUME on supporting

shuffle-heavy tasks and the performance of VOLUME in HPC

environments, we run the adjacency list workload with 150GB

input. Fig. 8(d) shows the execution time of adjacency list in

the research testbed and TH-1/GZ. We can see that the per-

node throughput on TH-1/GZ is as higher than that on the

research testbed, thanks to the high-performance hardware.

TABLE I: Time for writing persistent data in VOLUME and

recovering the home service
Data size Generating Commit Recovery

8TB 6874.8s 129.3s 145.0s

C. Storing data persistently and recovery

To investigate the capability of VOLUME to store large

data persistently and the time for recovering the VOLUME

in the presence of faults, we run teragen to perform parallel

I/O with 8TB data on 30 nodes and force the home to restart

the VOLUME to emulate crashes. As VOLUME maintains a

one-to-one mapping of disk blocks to memory pages in the

persistent memory, recovering the VMCs is very fast. Hence,

we only measure the time for recovering the home.
TABLE I shows the time for generating the datasets and

the time used by the home service for committing snapshots

and recovering the metadata after being restarted. Although

much of the time is for generating the random input, the per-

node throughput for generating 8TB data is 38.8MB/s which is

about 50% of the raw disk I/O throughput in our cluster. The

time used by the home service for committing the 8TB data

changes takes 2.8% of the overall execution time, delivering a

61.9GB/s throughput. This shows that the home service is very

efficient to support commit requests at a high aggregate rate.

For recovery, the home takes 145 seconds for recovering the

metadata from the log for the persistent memory storing 8TB

data. Applying certain techniques, such as checkpointing, can

improve the recovery speed, which we leave as future work.

IV. RELATED WORK

Unifying physical memory from a cluster of servers is

studied for many years. Examples include distributed shared

memory systems such as Ivy [36] and Treadmarks [37], virtual

machines, such as vNUMA [38] and DVM [9], operating

system extensions, such as GMS [16], caching systems such as

Memcached [39], and storage systems, such as RAMCloud [7].

Researchers suggest using the main memories from many

servers in the datacenters to create the storage system [7] and

some MapReduce implementations make use of the main mem-

ories on working nodes, such as Twister [40], Phoenix [24],

MRlite [6] and EMR [41]. On the other hand, the capacity of

the main memories on the commodity servers are far smaller

than the disks’ and the storage capacity of these systems

is consequently limited. Although a memory-based storage

system with large capacity can be built with a large number

of servers, the cost is very high and the utilization of the

processor resources on these servers is possibly low most of

the time. VOLUME unifies the physical memory and disks in

a memory space, provides a transactional semantics, supports

storing data persistently, and provides a strong substrate for

general, efficient and scalable parallel computation systems.

Emerging data processing systems, such as Spark/RDD [11]

and Piccolo [42], handle the datasets using in-memory data

structures and deliver higher performance than file system

based systems. VOLUME provides a different way for or-

ganizing data in memory. For example, programs on Spark

can organize data as RDDs in a lineage graph and apply

transformations or actions on RDDs. Programs on VOLUME

store data in the memory space, update the data in snapshots

and commit the changes. The persistent memory of VOLUME

provides a way to make the data persistent for data-intensive

computation in datacenters. Programs can make some of its

data persistent for storing results which may also be used by

other programs at a later time.

In recent years, MapReduce-style systems are becoming

increasingly popular for a set of applications [2], [22], [26].

The large data processed are usually stored and shared as files

in distributed or local file systems. GFS is used as the substrate

of the MapReduce in Google’s datacenter. Over the past

decades, the performance of disks has not improved so quickly

as the disk capacity has [7]. The disk performance is becoming

a bottleneck of the MapReduce-like systems, especially for

workloads with datasets of moderate sizes. Different from the

file system based approaches, VOLUME builds a distributed

virtual memory which unifies the physical memory and disk

resources as the substrate for computation in datacenters.

V. CONCLUSION

We construct VOLUME, a distributed virtual memory as

a system-wide data substrate. VOLUME provides a general

memory-based abstraction with transactional semantics, takes

advantage of DRAM in the system to accelerate computation,

and, transparent to programmers, scales the system to handle

large datasets by swapping data to disks and remote servers

for general-purpose computation in datacenters.

REFERENCES

[1] “Apache Hadoop,” http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” in OSDI’04, 2004.
[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in SOSP’03,

2003, pp. 29–43.
[4] L. Barroso, J. Dean, and U. Hoelzle, “Web search for a planet: The Google cluster

architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28, 2003.
[5] R. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable MapReduce

on a large-scale shared-memory system,” in IEEE Intl. Sympsium on Workload

Characterization, 2009, pp. 198 –207.
[6] Z. Ma and L. Gu, “The limitation of MapReduce: A probing case and a lightweight

solution,” in CLOUD COMPUTING 2010, 2010.
[7] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,

S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,

and R. Stutsman, “The case for RAMClouds: scalable high-performance storage
entirely in DRAM,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 92–105, January 2010.

[8] M. Zaharia, N. M. M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets,” University of California, Berkeley, Tech.
Rep. UCB/EECS-2010-53, May 2010.

[9] Z. Ma, Z. Sheng, L. Gu, L. Wen, and G. Zhang, “DVM: Towards a datacenter-scale
virtual machine,” in VEE’12, 2012.

[10] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum, “Fast
crash recovery in RAMCloud,” in Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, ser. SOSP ’11, 2011, pp. 29–41.
[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in NSDI’12.

[12] “Layer Zero,” http://www.lazero.net.
[13] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A critique

of ANSI SQL isolation levels,” in Proc. of SIGMOD’95, 1995, pp. 1–10.
[14] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,

M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional memory
coherence and consistency,” in SIGARCH Comput. Archit. News, vol. 32, no. 2,
2004, p. 102.

[15] B. Nitzberg and V. Lo, “Distributed shared memory: a survey of issues and
algorithms,” Computer, vol. 24, no. 8, pp. 52–60, 1991.

[16] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath, “Implementing global memory management in a workstation cluster,” in
SOSP ’95, 1995, pp. 201–212.

[17] Z. Ma, Z. Sheng, and L. Gu, “DVM: A big virtual machine for cloud computing,”
IEEE Transactions on Computers, no. 99, April 2013.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,
“Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling,” in EuroSys’10, 2010, pp. 265–278.

[19] R. Guerraoui, “Non-blocking atomic commit in asynchronous distributed systems
with failure detectors,” Distributed Computing, vol. 15, no. 1, pp. 17–25, 2002.

[20] J. Stamos and F. Cristian, “A low-cost atomic commit protocol,” in Proceedings of

the Ninth Symposium on Reliable Distributed Systems, 1990, pp. 66–75.
[21] X. Yang, X. Liao, K. Lu, Q. Hu, J. Song, and J. Su, “The TianHe-1A supercomputer:

its hardware and software,” Journal of Computer Science and Technology, vol. 26,
no. 3, pp. 344–351, 2011.

[22] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for data intensive scientific
analysis,” in Fourth IEEE Intl. Conf. on eScience, 2008, pp. 277–284.

[23] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench benchmark suite:
Characterization of the MapReduce-based data analysis,” in ICDEW’10, march
2010, pp. 41 –51.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating
MapReduce for multi-core and multiprocessor systems,” in HPCA’07, 2007.

[25] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving
MapReduce performance in heterogeneous environments,” in OSDI’08, 2008, pp.
29–42.

[26] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun,
“Map-Reduce for machine learning on multicore,” in NIPS’07, 2007, pp. 281–288.

[27] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on MapReduce,”
in CloudCom’09, 2009, pp. 674–679.

[28] M. T. Faraz Ahmad, Seyong Lee and T. N. Vijaykumar, “MapReduce benchmarks,”
http://web.ics.purdue.edu/∼fahmad/benchmarks.htm.

[29] “Sorting 1PB with MapReduce,” http://googleblog.blogspot.com/2008/11/

sorting-1pb-with-mapreduce.html.
[30] O. O’Malley and A. Murthy, “Winning a 60 second dash with a yellow elephant,”

Tech report, Yahoo!, 2009.
[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey,

“DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language,” in OSDI’08, 2008, pp. 1–14.

[32] “Wikimedia Downloads,” http://dumps.wikimedia.org/ .
[33] J. MacQueen, “Some methods for classification and analysis of multivariate obser-

vations,” in Proc. of the fifth Berkeley symposium on mathematical statistics and

probability, vol. 1, no. 281-297, 1967, p. 14.
[34] “Sort Benchmark,” http://sortbenchmark.org/ .
[35] Z. Ma, K. Hong, and L. Gu, “MapReduce-style computation in distributed virtual

memory,” HKUST, Tech. Rep. HKUST-CS14-03, 2013.
[36] K. Li and P. Hudak, “Memory coherence in shared virtual memory systems,” ACM

Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359, 1989.
[37] P. Keleher, A. Cox, S. Dwarkadas, and W. Treadmarks, “Distributed shared memory

on standard workstations and operating systems,” in Proc. 1994 Winter Usenix Conf.,
1994, pp. 115–131.

[38] M. Chapman and G. Heiser, “vNUMA: A virtual shared-memory multiprocessor,”
in USENIX ATC’09, 2009.

[39] “Memcached,” http://memcached.org/ .
[40] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and G. Fox, “Twister:

a runtime for iterative mapreduce,” in HPDC’10, 2010, pp. 810–818.
[41] K.-T. Rehmann and M. Schoettner, “An in-memory framework for extended

MapReduce,” in ICPADS’11, 2011, pp. 17–24.
[42] R. Power and J. Li, “Piccolo: building fast, distributed programs with partitioned

tables,” in OSDI’10, 2010, pp. 1–14.

